- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Metzler, Ralf (2)
-
Ślęzak, Jakub (2)
-
Balcerek, Michał (1)
-
Burnecki, Krzysztof (1)
-
Chechkin, Aleksei V (1)
-
Janušonis, Skirmantas (1)
-
Vojta, Thomas (1)
-
Wang, Wei (1)
-
Wyłomańska, Agnieszka (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We introduce the stochastic process of incremental multifractional Brownian motion (IMFBM), which locally behaves like fractional Brownian motion with a given local Hurst exponent and diffusivity. When these parameters change as function of time the process responds to the evolution gradually: only new increments are governed by the new parameters, while still retaining a power-law dependence on the past of the process. We obtain the mean squared displacement and correlations of IMFBM which are given by elementary formulas. We also provide a comparison with simulations and introduce estimation methods for IMFBM. This mathematically simple process is useful in the description of anomalous diffusion dynamics in changing environments, e.g. in viscoelastic systems, or when an actively moving particle changes its degree of persistence or its mobility.more » « less
-
Wang, Wei; Balcerek, Michał; Burnecki, Krzysztof; Chechkin, Aleksei V; Janušonis, Skirmantas; Ślęzak, Jakub; Vojta, Thomas; Wyłomańska, Agnieszka; Metzler, Ralf (, Physical Review Research)
An official website of the United States government
